Voltage Control Strategy for Direct-drive Robots Driven by Permanent Magnet Synchronous Motors
author
Abstract:
Torque control strategy is a common strategy to control robotic manipulators. However, it becomes complex duo to manipulator dynamics. In addition, position control of Permanent Magnet Synchronous Motors (PMSMs) is a complicated control. Therefore, tracking control of robots driven by PMSMs is a challenging problem. This article presents a novel tracking control of electrically driven robots which is free from manipulator model. The proposed control law is simple but robust against uncertainties associated with manipulator dynamics. The novelty is the developing of voltage control strategy for the direct-drive robots driven by PMSMs. In addition, a state-space model is obtained for the robotic system including the direct-drive robot manipulator and the PMSMs. Then, the proposed approach is verified by stability analysis. A comparative study through simulations shows the superiority of the voltage control strategy to the torque control strategy.
similar resources
Adaptive Voltage-based Control of Direct-drive Robots Driven by Permanent Magnet Synchronous Motors
Tracking control of the direct-drive robot manipulators in high-speed is a challenging problem. The Coriolis and centrifugal torques become dominant in the high-speed motion control. The dynamical model of the robotic system including the robot manipulator and actuators is highly nonlinear, heavily coupled, uncertain and computationally extensive in non-companion form. In order to overcome thes...
full textDigital Control of Permanent Magnet Synchronous Motors
Permanent Magnet Synchronous Motor (PMSM) variable-speed drive is widely used in the industry because of its particularly high mechanical power density, simplicity and cost effectiveness. Eliminating the mechanical sensor mounted on the shaft of the motors gives further improvement. These drives are referred to as “sensorless” electrical drives. In this paper a novel sensorless algorithm is pro...
full textParameter Identification of Permanent-magnet Synchronous Motors for Sensorless Control
An online parameter identification method is proposed for sensorless control for surface and interior permanent-magnet synchronous motors (SPMSMs and IPMSMs, respectively). As this method does not use rotor position or velocity to identify motor parameters, the identified parameters are not affected by position estimation error under sensorless control. The proposed method that is based on syst...
full textArtificial Optimal Fuzzy Control Strategy for Elevator Drive System by Using Permanent Magnet Synchronous Motor
There are many power electronic converters and motor drives connected together to form the electrical system of an elevator. In this paper, we have presented a modeling tool that has the advantages of utilizing capabilities of the PMSM software in detailed simulations of converters, motor drives, and electric machines. In addition, equivalent electrical models of Elevator drive system. This pap...
full textDirect Self-Control Strategy for Axial Flux Ironless Permanent Magnet Synchronous Motors Based on Duty Ratio Control
Axial Flux Ironless permanent magnetic synchronous motor (AFIPMSM) is a new permanent magnetic motor. It has many advantages, such as high torque-to-weight ratio, good efficiency, no cogging torque, and the sinusoidal back EMF. It gradually becomes the good choice in drive system. However, the small armature winding inductance causes the current is not continued with the PWM control based on VS...
full textMy Resources
Journal title
volume 28 issue 5
pages 709- 716
publication date 2015-05-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023